

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Data Structures (20MC9102) Course & Branch: MCA

Year & Sem: I-MCA & I-Sem Regulation: R20

UNIT –I BASIC CONCEPT, LINEAR LIST

1	a)	What is an Algorithm? Explain its specifications.	[L1][CO1]	[6M]
	b)	What are the steps required to find sum of two numbers.	[L1][CO1]	[6M]
2	a)	What is a Data Structure? Explain its advantages.	[L1][CO1]	[6M]
	b)	Explain various types of Data Structures.	[L2][CO1]	[6M]
3	a)	What is space complexity? Evaluate space complexity for the following code int square(int a) { return a*a; }	[L5][CO1]	[6M]
	b)	What is time complexity? Evaluate time complexity for the following code int square(int a) { return a*a; }	[L5][CO1]	[6M]
4	Dis	cuss how you can measure Performance of an algorithm.	[L2][CO1]	[12M]
5	a)	Identify the steps to print the product of two numbers.	[L3][CO1]	[6M]
	b)	Identify the steps to display numbers from one to given number.	[L3][CO1]	[6M]
6	a)	What is an Array? Explain the representation of an array.	[L2][CO2]	[6M]
	b)	Apply various operations that can perform on array.	[L3][CO2]	[6M]
7	a)	Explain Linear and Non Linear Data structure with examples	[L2][CO1]	[6M]
	b)	Differentiate linear and non-linear data structure.	[L4][CO1]	[6M]
8		alyze and write a program to store a set of values of same data type into a gle variable.	[L4][CO2]	[12M]
9	•	plain the following i) Big-Oh ii) Big-Omega iii) Big-Theta	[L2][CO2]	[12M]
10	Dis	cuss about Asymptotic Notations with their types.	[L2][CO2]	[12M]

Course Code: 20MC9102

UNIT -II

LINKED REPRESENTATION, STACK & QUEUE

1	a)	Prepare an algorithm to insert an element at the end of doubly linked list.	[L3][CO2]	[6M]
	b)	Prepare an algorithm to delete an element at the end of doubly linked list.	[L3][CO2]	[6M]
2		plain different ways for inserting an element into a Single Linked List with mple.	[L2][CO2]	[12M]
3	Develop Circularly Linked List with various operations.			[12M]
4	a)	What is linked list? What are the different types of linked list?	[L1][CO2]	[6M]
	b)	Explain the advantages of linked list over arrays.	[L2][CO2]	[6M]
5	a)	Design an algorithm to insert an element at beginning of circularly linked list.	[L3][CO2]	[6M]
	b)	Design an algorithm to delete an element at end of circularly linked list.	[L3][CO2]	[6M]
6	a)	What is a Stack? What are the operations that perform on a stack?	[L1][CO2]	[6M]
	b)	What is a Queue? What are the operations that perform on a Queue?	[L1][CO2]	[6M]
7	Dev	velop various stack operations using arrays. With example	[L6][CO2]	[12M]
8	Dev	velop various queue operations using arrays. With example	[L6][CO2]	[12M]
9	Wh	at is an expression? Explain various types of expressions with example.	[L2][CO2]	[12M]
10	a)	Convert the expression $(5 + 6) * (6 - 5)$ from infix to postfix	[L2][CO2]	[6M]
	b)	Evaluate the postfix expression 25*423-*+.	[L5][CO2]	[6M]

UNIT –III

TREES & MULTIWAY TREES

1	a)	What are the different ways to define a tree?	[L1][CO3]	[4M]
	b)	Find various terminologies used in a tree. Explain any six terminologies	[L3][CO3]	[8M]
2	a)	Define binary tree and give the binary tree node structure.	[L1][CO3]	[6M]
	b)	What are the various types of a binary tree?	[L1][CO3]	[6M]
3	a)	What is the various representation of a binary tree?	[L1][CO3]	[6M]
	b)	List out and explain various binary tree traversals.	[L2][CO3]	[6M]
4		scribe different cases to delete an element in BST with an algorithm and mples.	[L2][CO3]	[12M]
5	a)	Explain BFS Tree Traversal with an example.	[L1][CO3]	[6M]
	b)	Explain DFS Tree Traversal with an example.	[L1][CO3]	[6M]
6	Dev	velop B – Tree with various operations.	[L6][CO3]	[12M]
7	a)	Analyze the steps to insert elements into Binary Search Tree.	[L4][CO3]	[6M]
	b)	Analyze the steps to search element in Binary Search Tree.	[L4][CO3]	[6M]
8	Ide	i) Internal Nodes ii) External Nodes iii) Depth iv) Height v) Level D E F G H	[L3][CO3]	[12M]
9	Ide	ntify the following terms from the given tree i) Parent ii) Child iii) Siblings iv) Path v) Sub Tree D E F G H	[L3][CO3]	[12M]
10	a)	Prepare an algorithm to insert an element into B+ Tree.	[L3][CO3]	[6M]
	b)	Prepare an algorithm to delete an element in B+ Tree.	[L3][CO3]	[6M]

Course Code: 20MC9102

UNIT –IV

SEARCHING AND SORTING

1	a)	What do you mean by searching? What are the types of searching?	[L1][CO4]	[6M]
	b)	Differentiate various searching techniques.	[L4][CO4]	[6M]
2	a)	Explain Linear Search with an algorithm and example.	[L2][CO4]	[6M]
	b)	Design a program to demonstrate Linear Search.	[L3][CO4]	[6M]
3	Exp	plain about Hashing with an example.	[L2][CO4]	[12M]
4	a)	Explain Binary Search with an algorithm and example.	[L2][CO4]	[6M]
	b)	Develop a program to demonstrate Binary Search.	[L6][CO4]	[6M]
5	a)	Discuss Space and Time Complexity for Linear and Binary Search.	[L2][CO4]	[6M]
	b)	Distinguish between Linear Search and Binary Search.	[L5][CO4]	[6M]
6	a)	Explain insertion sort with an algorithm and example.	[L2][CO4]	[5M]
	b)	Design a program to demonstrate insertion sort.	[L3][CO4]	[7M]
7	a)	Explain bubble sort with an algorithm and example.	[L2][CO4]	[5M]
	b)	Design a program to demonstrate bubble sort.	[L3][CO4]	[7M]
8	a)	Explain selection sort with an algorithm and example.	[L2][CO4]	[5M]
	b)	Design a program to demonstrate selection sort.	[L3][CO4]	[7M]
9	a)	Prepare an algorithm for Quick sort with example.	[L3][CO4]	[6M]
	b)	Prepare an algorithm for Merge sort with example.	[L3][CO4]	[6M]
10	Dif	ferentiate various sorting techniques with time complexity.	[L4][CO4]	[12M]

UNIT -V

GRAPHS & GRAPH ALGORITHMS

1	a)	Define Graph. List out various graph operations?	[L1][CO5]	[4M]
	b)	What are the various applications and properties of Graphs?	[L1][CO5]	[8M]
2	a)	Discuss BFS Graph Traversal with an algorithm.	[L2][CO5]	[3M]
	b)	Explain BFS Graph traversal with steps for the following Graph.	[L2][CO5]	[9M]
		A B C G		
3	Wh	at is a Graph? Explain various Graph terminologies.	[L2][CO5]	[12M]
4	a)	Discuss DFS Graph Traversal with an algorithm.	[L2][CO5]	[3M]
	b)	Explain DFS Graph traversal with steps for the following Graph.	[L2][CO5]	[9M]
		B C G		
5	a)	What is minimum – cost spanning tree?	[L1][CO5]	[4M]
	b)	Prepare an algorithm for Prim's with example.	[L3][CO5]	[8M]
6	a)	Discuss how to represent Graph storage using Adjacency matrix.	[L2][CO5]	[7M]
	b)	Briefly explain about Adjacency List with example.	[L2][CO5]	[5M]
7	Illu	strate the steps for Dijkstra's algorithm with an example.	[L3][CO5]	[12M]
8	Exp	plain about shortest path problem with an algorithm and example.	[L2][CO5]	[12M]
9	Exp	plain in detail about various minimum cost spanning tree algorithms.	[L2][CO5]	[12M]
10	Dis	cuss and compare various graph traversals.	[L5][CO5]	[12M]

Prepared by: Mr. J. S. ANANDA KUMAR Assistant Professor/MCA